This report describes a clinical approach to using the zygomatic and pterygomaxillary bones to provide additional anchorage for longer implants to support an immediately functional maxillary screw-retained provisional fixed prosthesis. The purpose is to report the problems of patients who have experienced the most severe form of maxillary alveolar resorption and to demonstrate a specific protocol which provides immediately loaded implants without bone grafting. (J Prosthet Dent 2010;103:133-138)

The concept of immediately loading implants has been well documented in the literature. The maxillary arch poses difficulties for immediate loading that are not found for the mandible. These difficulties include a predominance of type III and IV bone, shown to be responsible for an increased number of implant failures, as well as the presence of the maxillary sinus, which can limit the quantity of vertical bone necessary to place implants. To provide patients with a successful, immediately loaded prosthesis, these problems must be overcome. Use of the pterygomaxillary and zygomatic regions has been shown by others to be a viable treatment modality to support immediate implant placement and the immediately loaded fixed prosthesis. The median palatal bone, which has been shown to have a high percentage of dense bone relative to total bone volume, should also be considered, as needed, to provide additional stability during implant surgery and the provisional restoration phase. The purpose of the treatment described in this clinical report was to provide the patient with an immediately loaded, functional maxillary fixed prosthesis without bone grafting surgery in a single visit, demonstrating that even the most severely resorbed maxilla can be restored and functionally loaded when the pterygomaxillary and zygomatic regions are used for implant support.

CLINICAL REPORT

A 69-year-old woman with a medical history of well controlled type II diabetes presented to a private practice with the chief complaint that she was unable to wear her maxillary complete removable denture. She had been provided with several treatment options over the years, including bone grafting techniques that she believed were unacceptable. Prosthodontic treatment options were discussed, including bone grafting, implant placement, and delayed loading. She ultimately accepted a treatment plan that would allow for fixed, screw-retained maxillary and mandibular prostheses.
with immediate loading.

An immediate, functionally loaded, maxillary fixed implant-supported acrylic resin provisional prosthesis was planned for insertion immediately following implant placement, to be followed in 3 months with a definitive ceramic prosthesis using a milled titanium framework. A mandibular immediate fixed prosthesis had been fabricated for the patient 1 year prior to treatment of the maxilla. The patient was evaluated clinically and radiographically using traditional panoramic and cephalometric films, which revealed the extreme degree of bone loss and the complexity of future prosthetic treatment (Fig. 1).

A cone beam computed tomography (CBCT) scan (i-CAT; Imaging Sciences Intl, Hatfield, Pa) was performed to acquire additional radiographic data and to assist with surgical and prosthetic treatment planning. Prior to scanning, a new maxillary denture was made for the patient, with emphasis on the accuracy of intaglio surface fit and esthetics. Fourteen uniform but randomly positioned perforations were made in the denture using a no. 8 round bur (Brasseler USA, Savannah, Ga). The perforations were then filled with gutta-percha (Coltène/Whaledent, Inc, Cuyahoga Falls, Ohio), creating fiduciary radiographic markers used by the planning software, according to a specific guided surgery protocol (NobelGuide, Procera; Nobel Biocare USA, Yorba Linda, Calif) that uses a dual-scan technique to acquire the pertinent information.

The digital imaging and communications in medicine (DICOM) formatted files that were exported from the CBCT scan were converted into a proprietary 3-dimensional (3-D) format so that further evaluation and virtual implant planning could begin. The software was used to plan implant locations for the pterygomaxillary, lateral-nasal, midpalatal, and zygomaticus areas (Figs. 2 and 3). One implant (NobelSpeedy Groovy; Nobel Biocare USA) was planned for each of the pterygomaxillary and lateral-nasal areas. Canine eminences did not exist in the patient, just a narrow isthmus of bone separating the lateral aspect of the nose and the maxillary sinus. Two additional implants (Brånemark System; Nobel Biocare USA) were planned for each of the zygomatic regions. A single short implant (Brånemark System Shorty) was planned for the midpalate to increase the stability of the surgical template and, if needed, to help support the fixed provisional prosthesis during the initial healing and osseointegration period. Following completion of the virtual implant planning, the data was uploaded to the manufacturing facility (Nobel Biocare AB, Göteborg, Sweden) for fabrication of a surgical template (Fig. 4). At the time of the procedure, the guided surgery protocol was not compatible with all phases for placement of a zygomatic implant. Preparation and placement of the zygomatic implants were accomplished freehand, using flap reflection and direct vision, even though they were included in the virtual planning.

The patient was draped and prepared for implant surgery in the standard sterile fashion, modified Brånemark. The anesthesiologist administered general anesthesia with nasal intubation, followed by local anesthesia that included 8 carpules of bupivacaine 0.5% with 1:200,000 epinephrine (Hospira, Inc, Lake Forest, Ill), and 4 carpules of lidocaine 2% with 1:50,000 epinephrine (Novocol Pharmaceutical of Canada, Inc, Cambridge, Ontario, Canada). The local

![A, Cephalometric radiograph, frontal view, depicting advanced atrophy of maxilla. B, Panoramic radiograph depicting advanced atrophy of maxilla.](image_url)
Surgical anesthesia was administered high into the vestibular areas to avoid changing the volume topography of the palate at the beginning of the surgery.

The surgical template was aligned intraorally using a surgical index provided by the laboratory (CM Ceramics USA, Mahwah, NJ). A 1.5-mm twist drill (Nobel Biocare USA) was used to prepare osteotomies to place 6 anchor pins (Nobel Biocare USA) designed to secure the surgical template. One of the anchor pins was positioned on the palate to engage palatal and septal bone. The surgical index was then removed to begin preparation for implant placement. Soft tissue was removed and crestal bone was profiled using the guided counterbore drill (Nobel Biocare USA). A 2-mm guided twist drill (Nobel Biocare USA) was used, followed by a 3-mm twist drill (Nobel Biocare USA), to prepare the implant osteotomies. The following implants were placed using the template: a midpalatal implant (Brånemark System Mk III Shorty, 4 x 7-mm implant; Nobel Biocare USA) was placed first, to provide additional stabilization for the surgical template, then the right and left pterygomaxillary implants (Nobel-Speedy Groovy; Nobel Biocare USA), 4 x 18 mm, were placed. The right and left lateral-nasal sites received 3.75 x 15-mm implants (Brånemark System Mk III Groovy; Nobel Biocare USA). The surgical template was removed, and 4 zygomatic implants (Brånemark System, Nobel Biocare USA) were placed in the manner previously reported.

Zygomatic implants (Brånemark System; Nobel Biocare USA) were placed in the premolar and first molar areas on each side. Conical abutments (EsthetiCone; Nobel Biocare USA) were placed on the lateral-nasal implants and low-profile abutments (Standard; Nobel Biocare USA) on the pterygomaxillary implants. Thirty-degree angled conical abutments (EsthetiCone; Nobel Biocare USA) and long guide pins (Nobel Biocare USA) were placed on the zygomatic implants and rotated to position the screw access holes closer to the occlusal table, minimizing the palatal bulge that can be associated with zygomatic implants. A maxillary acrylic resin screw-retained provisional prosthesis with a cast, midpalatal strut was fabricated prior to implant surgery, using a definitive cast retro engineered from the surgical template (Figs. 5 and 6), following this specific guided surgery protocol. The surgical template allows for fabrication of the definitive cast by specific hardware components.
The prosthesis was inserted and fully seated on the 4 implants that were placed using the surgical template. The prosthesis was then screwed into place with hand tightening. Acrylic resin (Jet Acrylic; Lang Dental Mfg Co, Wheeling, Ill) was mixed, loaded into a syringe (Monoject Syringe; Kendall Healthcare, Mansfield, Mass), and flowed around the zygomatic prosthetic cylinders to join them to the fixed prosthesis. The provisional prosthesis was then removed from the patient, refined, and polished in the laboratory. The tissue was sutured (4-0 interrupted Vicryl sutures; Ethicon, Inc, Somerville, NJ). It was determined that the placed implants could support immediate function without the palatal implant, so the metal strap that was fabricated was removed and not used. A cover screw was placed on the palatal implant. The flap was sutured prior to placement of the prosthesis to maximize visibility and access to the wound margins, to obtain primary closure. The completed provisional acrylic resin prosthesis was then screwed into position with a uniform torque force of 15 Ncm.

Three months following the initial implant surgery and provisional prosthesis placement, the provisional restoration was removed. All implants were clinically determined to be stable, with no mobility. The provisional restoration was replaced with long guide pins (Nobel Biocare USA), and a definitive open-tray impression was made by using the maxillary fixed provisional prosthesis as an impression template. Heavy-body impression material (Reprosil; Dentsply Intl, York, Pa) was syringed beneath the acrylic resin maxillary implant prostheses, and a pick-up impression was made. Abutment replicas (Esthetic-Cone and Bränemark standard abutment replicas; Nobel Biocare USA) were placed onto the temporary cylinders of the provisional prosthesis. A soft tissue (Gingifast Rigid; Zimmer, Inc, Eatontown, NJ) definitive cast using type IV die stone (Vel-Mix; Kerr Corp, Orange, Calif) was poured and separated from the provisional prosthesis. The maxillary and mandibular casts were articulated using the provisional prosthesis and an occlusal registration (Regisil 2x; Dentsply Intl). The dental laboratory (CM Ceramics USA, Mahwah, NJ) fabricated a definitive maxillary fixed prosthesis using a custom-milled titanium framework with pink gingival methyl methacrylate resin (Clássico resin; Clássico Artigos Odontológicos Ltda, São Paulo, SP, Brazil), individual alumina ceramic copings (Procera; Nobel Biocare USA), and individual
porcelain (NobelRondo Alumina; Nobel Biocare USA) crowns fused to the copings, designed to provide mutually protected occlusion (Figs. 7 and 8).

The patient cleans the prosthesis twice each day using a toothbrush and irrigation device (Water Pik, Inc, Ft. Collins, Colo). All implants have remained in function over the past 30 months, and the patient follows her prescribed professional hygiene recall schedule.

**SUMMARY**

Combined computer-guided and freehand implant surgical techniques improve surgical precision, efficiency, and treatment outcomes in the atrophic maxilla. Even patients with the most severe forms of alveolar atrophy of the maxilla can be candidates for treatment with an immediately loaded, fixed, screw-retained prosthesis with trained, skillful use of the pterygomaxillary and zygomatic regions. This treatment can be accomplished without bone grafts.

**REFERENCES**


Corresponding author:
Mr Stephen F. Balshi
PI Dental Center, Institute for Facial Esthetics
407 Pennsylvania Ave
Ft. Washington, PA 19034
Fax: 215-643-1149
E-mail: balshi2@aol.com

Acknowledgements
The authors thank their administrative and clinical assistants for their kind and gentle treatment of the patient; Mark Palmer and the technicians at 360 Imaging for assistance with the CT scan; and Rui Moniz, Aline Cruz, and Dora Silva of CM Ceramics USA, for their contribution of final prosthesis construction.