Osseointegrated Implants in a Patient With Hermansky-Pudlak Syndrome: A Case Report

Thomas J. Balshi, DDS*/Ramon Hernandez, OD**/ Steven A. Shapiro, DO***

Partial edentulism in a 16-year-old female with Hermansky-Pudlak syndrome was treated using the Brånemark osseointegration technique. Two 15 × 3.75 mm implants were placed in the mandibular anterior area. The two implants were tested for mobility using a Periotest instrument at the time of the implant placement, at abutment connection, and at 3 months following delivery of the final prosthesis. The results from this study showed that the Brånemark osseointegration procedure can be used to treat patients with platelet disorders affecting the clotting mechanism.

(INT J ORAL MAXILLOFAC IMPLANTS 1994;9:333–337)

Key words: Hermansky-Pudlak Syndrome, implants, osseointegration, Periotest, platelet disorders

Hermansky-Pudlak Syndrome (HPS) is an extremely rare blood disorder exhibiting a triad of clinical signs. The characteristic features of HPS include albinism, mild hemorrhagic problems resulting from platelet dysfunction, and accumulation of ceroid-like pigment in the bone marrow macrophages. Although Hermansky and Pudlak originally thought that the syndrome was related to the absence of platelets,¹ the bleeding disorder associated with HPS has been ascribed to a platelet defect²–⁴ that includes a reduced concentration of serotonin, decreased number of platelet-dense granules, and concomitant diminution in the reaction essential for initiation and propagation of the second wave of irreversible platelet aggregation.

Longitudinal studies have shown that osseointegrated implants function successfully in healthy bone for the treatment of complete⁵,⁶ and partial edentulism.⁷–⁹ This article describes the hematologic considerations and clinical management of a partially edentulous patient with Hermansky-Pudlak syn-

drome using Brånemark implants to restore oral function and comfort.

Case Report

A 16-year-old white female with Hermansky-Pudlak syndrome was admitted to the hospital for the treatment of traumatic injuries sustained in a motor vehicle accident. The preoperative diagnosis included the following: (1) open complete fracture of the symphysis of the mandible, (2) bilateral condyle fractures, (3) multiple fractures of the maxilla, (4) multiple fractured teeth, and (5) avulsed mandibular right central and lateral incisors. Three months after emergency treatment, the patient presented for prostodontic rehabilitation. Clinical and radiographic evaluation revealed both the loss of the mandibular right central and lateral incisors and alveolar ridge resorption (Fig 1). The decision was made to place two Brånemark titanium implants (Nobelpharma USA, Chicago, IL) rather than a conventional fixed partial prosthesis that would result in excessive loss of healthy tooth substance. In consideration of her medical history, the patient was referred for additional hematologic consultation. A cooperative treatment plan was prepared by the authors, to coordinate therapy on an outpatient basis.

Stage 1 Osseointegration Surgery. The patient was scheduled for stage 1 osseointegration surgery, which was to follow the presurgical transfusion of platelets (six units). Thirty minutes after the platelet transfu-

**Assistant Clinical Professor, Temple University, Philadelphia, Pennsylvania; Research Director, Institute for Facial Esthetics, Fort Washington, Pennsylvania.
***Chairman, Department of Pediatrics, Suburban General Hospital, Norristown, Pennsylvania.

Reprint requests: Dr Thomas J. Balshi, Institute for Facial Esthetics, 467 Pennsylvania Avenue, Fort Washington, Pennsylvania, 19034.
Fig 8 Final ceramometal tissue-integrated prosthesis.

Fig 9 Incisal-lingual view showing screw access for the prosthesis through the cingulum areas.

Fig 10 Panoramic radiograph illustrates the final prosthesis supported by two osseointegrated Brånemark implants.

Fig 11 Postoperative view shows the esthetic rehabilitation provided using the fixed tissue-integrated prosthesis.

Healing occurred uneventfully, with no postoperative bleeding. The incisions were closed with Vicryl sutures. Three weeks later, the patient returned for suture removal and delivery of the final ceramometal tissue-integrated prosthesis (Figs 8 to 11).

Three months following placement of the final prosthesis, the patient returned for reevaluation. The tissue-integrated prosthesis was removed and Periotest values (Table 1) were obtained again for both implants (Fig 12). Results of all three Periotest evaluations are summarized in Table 1.

Plaque accumulations are known to produce gingival inflammation and, in advanced stages of periodontal disease, bleeding is common. Comprehensive oral hygiene instructions were given the patient, including an instructional videotape for home review.13

Discussion

Patients afflicted with HPS can be successfully managed on an outpatient basis for osseointegration treatment. Because no other patient with HPS has been reported to have had Brånemark implants placed, the osseous response to the titanium implants is of significant interest. Since Hermansky and
sion, the patient was draped for surgery in the standard manner. Following the Bränemark protocol for osseointegration, two 15 × 3.75 mm implants were placed in the edentulous anterior area of the mandible (Fig 2). Because of a large mesial osseous defect, the left central incisor was extracted at the time of the implant placement. At the time of implant placement, Periotest values (PTVs) were recorded for each implant. Six individual readings were made for each implant (Table 1). The Periotest instrument (Siemens, Bensheim, Germany), originally designed to record the stability of teeth, has been used to record implant stabilization in comparative studies analyzing differences between stage 1 and stage 2 and follow-up in patients treated with Bränemark implants.10-12 The mucosa was closed with Vicryl (Johnson & Johnson, New Brunswick, NJ) sutures. The patient clotted normally and had no postoperative bleeding.

Medications used postoperatively included acetaminophen with codeine (Tylenol 3, McNeil Consumer Products, Fort Washington, PA), as well as erythromycin 250 mg four times daily for 10 days. Peridex (Proctor & Gamble, Cincinnati, OH) was also prescribed twice daily. Family circumstances delayed the uncovering procedure for 8 months. The patient was again transfused with platelets prior to the uncovering as a precaution to assure hemostasis.

Stage 2 Osseointegration Surgery. Crestal and labial releasing incisions were made and flaps were raised to uncover the edentulous area directly above the implants. Bone overgrowth was excessive in the area of the right central incisor and covered a portion of the cover screw for the implant in the right lateral incisor area (Fig 3). Careful removal of the excess bone allowed the cover screws to be removed (Fig 4). Two 3-mm titanium EsthetiCone abutments (Nobelpharma USA, Chicago, IL) were fastened to the implants using a torque force of 20 Ncm. At that time, Periotest readings were made on the abutments. The PTVs at stage 2 surgery were generally lower than those recorded at stage 1 surgery, indicating increased stability of the implant, presumably the
result of additional deposition of cortical bone (Table 1). Impression copings were cut in half and the lower half was secured on the abutments with a guidepin to 10 Ncm (Fig 5). Using the teeth from the provisional removable partial denture, a conversion prosthesis was fabricated. Full-size impression copings were connected using light-cured Triad gel (Dentsply/York Division, York, PA) (Fig 6). A master impression, using elastic impression material, was made while the flaps were open. Following removal of the impression, the surgical site was cleansed to assure that no impression material remained. The conversion prosthesis was fastened to the titanium abutments with gold flathead screws tightened to 10 Ncm (Fig 7) and the flap sutured against the temporary prosthetic restoration.

Table 1 Periotest Values for Mandibular Implants

<table>
<thead>
<tr>
<th>Implant location</th>
<th>Time of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 1 surgery</td>
</tr>
<tr>
<td>Right central incisor</td>
<td>-4.8</td>
</tr>
<tr>
<td>Right lateral incisor</td>
<td>-2.2</td>
</tr>
</tbody>
</table>
Pudlak described pigmented macrophages in the bone marrow and the hemorrhagic diathesis associated with prolonged bleeding time, the use of osseointegrated implants penetrating the bone marrow is of clinical and scientific value. Clinical evidence obtained from this treatment procedure demonstrates that bone, even with patients having Hermansky–Pudlak syndrome, can heal with a normal clinical appearance, as evidenced by the bone growth over the cover screws during the 8-month healing period.

Clinical management of patients with HPS must be a coordinated effort between the hematologist and osseointegration team in using platelet transfusions prior to stage 1 or stage 2 osseointegration surgery. With this bleeding disorder, the use of a platelet transfusion minimizes the risk of prolonged postoperative bleeding.

Conclusion

The long-term results of osseointegration for HPS are unknown. However, this early clinical evidence appears to suggest that osseointegration will remain stable for the long term. Using clinical measurements, such as provided by the Periotest values, continued clinical observation of this particular patient is required to confirm the hypothesis that osseointegration can continue to dynamically improve the stability of the bone-implant interface.

Acknowledgments

The authors wish to thank Fort Washington Dental Lab, Mr Robert Winkelman, CDT, MDT, and Robin Mengen, as well as Ms Liz Kirk for manuscript preparation.

References